5 research outputs found

    DBD Plasma Assisted CO2 Decomposition: Influence of Diluent Gases

    Get PDF
    arbon dioxide (CO2) partial reduction to carbon monoxide (CO) and oxygen has been conducted in a dielectric barrier discharge reactor (DBD) operating a packed bed configuration and the results are compared with that of no packing condition. The effect of diluent gas is studied to understand the influence on dielectric strength of the plasma gas on CO2 splitting, with the objective of obtaining the best CO selectivity and high energy efficiency. Typical results indicated that among N-2, He and Ar gases, Ar showed the best decomposition efficiency. Glass beads packing has a strong influence on the performance, probably due to the enhanced field strength due to dielectric nature of the packed material. In a similar manner, Ar mole ratio in the gas mixture also played a significant role, where the maximum CO2 conversion of 19.5% was obtained with packed DBD at CO2: Ar ratio 1: 2. The best CO yield (16.8%) was also obtained under the same conditions. The highest energy efficiency was found to be 0.945 mmol/kJ. The activated species formed inside the CO2 plasma were identified by optical emission spectroscopy

    Microstrip Patch Antenna for GPS Application

    Get PDF
    The study and the design of rectangular microstrip patch antenna for multiband applications are presented in this paper. They can be simulated on antenna design software’s such as High Frequency Simulation Software (HFSS), Advanced Design System Momentum (ADS) and Agilent Vector Network Analyzer (E8361A) where different feeding techniques have been deployed to get the desired results. Two rectangular microstrip patch antennas of frequencies 1.5 GHz and 2.4 GHz are designed and simulated on HFSS

    Microstrip Patch Antenna for GPS Application

    Get PDF
    The study and the design of rectangular microstrip patch antenna for multiband applications are presented in this paper. They can be simulated on antenna design software’s such as High Frequency Simulation Software (HFSS), Advanced Design System Momentum (ADS) and Agilent Vector Network Analyzer (E8361A) where different feeding techniques have been deployed to get the desired results. Two rectangular microstrip patch antennas of frequencies 1.5 GHz and 2.4 GHz are designed and simulated on HFSS
    corecore